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Waterlike anomalies for core-softened models of fluids: One dimension

M. Reza Sadr-Lahijany, Antonio Scala, Sergey V. Buldyrev, and H. Eugene Stanley
Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215

~Received 23 July 1999!

We use a one-dimensional~1D! core-softened potential to develop a physical picture for some of the
anomalies present in liquid water. The core-softened potential mimics the effect of hydrogen bonding. The
interest in the 1D system stems from the facts that closed-form results are possible and that the qualitative
behavior in 1D is reproduced in the liquid phase for higher dimensions. We discuss the relation between the
shape of the potential and the density anomaly, and we study the entropy anomaly resulting from the density
anomaly. We find that certain forms of the two-step square-well potential lead to the existence atT50 of a
low-density phase favored at low pressures and of a high-density phase favored at high pressures, and to the
appearance of a pointC8 at a positive pressure, which is the analog of theT50 ‘‘critical point’’ in the 1D
Ising model. The existence of pointC8 leads to anomalous behavior of the isothermal compressibilityKT and
the isobaric specific heatCP . @S1063-651X~99!06012-2#

PACS number~s!: 61.20.Gy, 61.25.Em, 65.70.1y, 64.70.Ja
i
re

m
a

-
s

ed
e

ed
t
o

co

s
-
a

ve

e

ed
ny
f

b

an

de
o
o

rs of
of a
the

ed
-

al-

ter-
wa-
I. INTRODUCTION

Water, the most common liquid on earth, is uncommon
many of its properties. For example, water at ambient p
sure has an anomalous density behavior, as forT,4 °C its
density decreases upon cooling. The subject of liquid ano
lies is not limited to the density anomaly. Two other anom
lies are the increase of isothermal compressibilityKT ~den-
sity fluctuations! and of the isobaric specific heatCP
~entropy fluctuations! upon cooling. All these anomalies oc
cur in liquid water@1# and some occur also in other liquid
@1–3#.

In their pioneering work, Stell and Hemmer investigat
potentials that have a region of negative curvature in th
repulsive core@4# ~henceforth referred to as core-soften
potentials! in relation to the possibility of a new critical poin
in addition to the normal liquid-gas critical point. They als
pointed out that for the one-dimensional~1D! model with a
long-range attractive tail, the isobaric thermal expansion
efficient, aP[V21(]V/]T)P ~where V, T, and P are the
volume, temperature, and pressure!, can take an anomalou
negative value. Debenedettiet al., using general thermody
namic arguments, confirmed that a ‘‘softened core’’ can le
to aP,0 @5#. Stillinger and collaborators foundaP,0 for a
3D system of particles interacting by purely repulsi
interactions—a Gaussian potential@6#.

In this work, we investigate the relation of a core-soften
potential to the liquid anomalies mentioned above.Ab initio
calculations@7# and inversion of structure factor data@7,8#
revealed that a core-softened potential can be consider
realistic first-order approximation for the interaction of ma
materials with anomalous behavior@8,9#, even in the case o
network forming anomalous liquids@1#. A recent work has
showed that the anomalous behavior of a 1D model can
reproduced in two dimensions~2D! as well @10,11#.

Here we will provide the details necessary to underst
the preliminary results announced in@10#. Specifically, we
investigate thoroughly an exactly solvable 1D model in or
to develop an intuitive picture of how the core-softened p
tential can lead to all three anomalies and to relate the
PRE 601063-651X/99/60~6!/6714~8!/$15.00
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currence of these anomalies to the shape and paramete
the potential. We also discuss the possible existence
second critical point and its relation to the parameters of
model.

The core-softened potential that we study is~Fig. 1!

u~r !55
`, 0,r ,a

2le, a,r ,b

2e, b,r ,c

0, r .c,

~1!

wherer is the particle separation. The potential is compos
of a ‘‘hard core’’ of diametera which has a repulsive shoul
der ~henceforth referred to as ‘‘softened core’’! of width (b
2a) and depthle, and an attractive well of width (c2b)
and depthe. Unless specified otherwise, our numerical c
culations are for the choice of valuesa51, b51.4, c
51.7, e52, andl50.5 @12#. A similar potential was intro-
duced by Ben-Naim to model water anomalies@13,14#. A
continuous potential of an analogous form models the in
action between clusters of strongly bonded pentamers of
ter @15#.

FIG. 1. General form for the core-softened potentialu(r ) stud-
ied here. The length parametersa,b,c and energy parameterse,l
are shown~both sets in arbitrary units!.
6714 © 1999 The American Physical Society
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This type of interaction qualitatively reproduces the de
sity anomaly of water. At sufficiently low pressures and te
peratures, nearest-neighbor pairs are separated by a dis
r'b to minimize the energy. As temperature increases,
system explores a larger portion of the configurational sp
in order to gain more entropy. This includes the penetrat
of particles into the softened core, which can cause
anomalous contraction upon heating.

The relation between the density anomaly and the sh
of the potential can also be understood using the thermo
namic relation

~]V/]T!P5b2~P^~dV!2&PT1^dVdE&PT!, ~2!

whereb[1/kBT with kB being the Boltzmann factor,E is
the energy, and̂•••&PT is the thermodynamic average in
constantP, constantT ensemble. For a system with a dens
anomaly, the left-hand side of Eq.~2! is negative at tempera
tures below the temperature of maximum densityTMD . The
first term on the right-hand side, proportional to the square
the volume fluctuations, is always positive. Thus belowTMD
the second term must be negative, which requires antico
lation between the fluctuations inE andV. This kind of an-
ticorrelation exists for the core-softened model when
fluctuations occur between the states withr'b and the states
with r'a, which have a larger energy but a smaller volum
We conclude that the core-softened potential is a candi
for generating the density anomaly.

The paper is organized as follows. In Sec. II we pres
the exact solution for the Gibbs potential. Sections III–
discuss the anomalies in the density and entropy, and t
response functions compressibility and specific heat. In S
VII we discuss interesting analogies with the Ising mod
Finally, Sec. VIII interprets the anomalies in terms of tw
different local structures.

II. EXACT SOLUTION FOR GIBBS POTENTIAL

To derive the Gibbs potential for the model, we choo
c,2a to restrict the interactions to nearest neighbors. T
1D model is then exactly solvable using standard meth
@13,14,16#. The partition function is~see Appendix A!

Z~T,P!5
1

~DV!@L~T!#N~bP!2
@V~T,P!#N21, ~3!

whereN is the number of particles,DV is a discretization
factor which is needed for keepingZ dimensionless and doe
not enter the equation of state, andL(T) is the De Broglie
wavelength. Here

V~T,P![E
0

`

dxe2bPxe2bu(x), ~4!

whereu(x) is the interaction potential.
The Gibbs potentialG(T,P)[2kBT ln Z(T,P) is then

G~T,P!52kBT@~N21!ln V~T,P!2N ln L~T!

22 ln P2 ln DV#. ~5!
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In the thermodynamic limitN→`, the terms 2 lnP and
ln DV are negligible compared to the other extensive~order
N) terms.

Equation~3! is valid for any 1D system in which eac
particle interacts only with its nearest neighbors. If the int
action potential is given by Eq.~1!, then

V~T,P!5
1

bP
C~T,P!, ~6!

where~see Appendix A!

C~T,P![@flua1~f2fl!ub1~12f!uc# ~7!

andux(P,T)[e2bPx, f(T)[ebe.

III. DENSITY ANOMALY

We calculate the equation of state using the definitionV
[]G(T,P)/]P. From Eq.~5! we find that, in the thermody-
namic limit N→`, the average ‘‘volume’’~length in 1D! per
particle is

v[V/N52
kBT

V~T,P!

]V~T,P!

]P
. ~8!

Using Eqs.~6! and ~8!, we find the equation of state

v5
kBT

P
2

kBT

C~T,P!

]C~T,P!

]P
, ~9!

where

]C~T,P!

]P
52b@~flaua1~f2fl!bub1~12f!cuc#.

~10!

In the high-temperature limit wheref→1 andux→1, the
equation of state~9! tends to

v5
kBT

P
1a ~T→`!, ~11!

the equation of state for an ‘‘ideal gas’’ of rods, that is,
system of noninteracting rods of lengtha.

At T50, v as a function ofP has a discontinuity at

P5Pup[
~12l!e

b2a
, ~12!

which we call the upper transition pressure. AtT50,

v5H b, P,Pup

a, P.Pup.
~13!

We will return to this first-order transition in Sec. VIII.
Next we study the equation of state for fixed pressure.

each value ofP, we find the value ofv(T) using Eq.~9! ~Fig.
2!. These isobars separate into two different groups.

~i! For P.Pup, v increases monotonically withT, start-
ing from its minimal valuev5a. At these high pressures, th
nearest neighbors are pushed inside the softened core an
a result, the density anomaly does not occur.
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~ii ! WhenP is lowered just belowPup, v5b at T50 @Eq.
~13!#, and thev(T) isobars show a maximum at a temper
ture of minimum densityTmD and a minimum atTMD
@3,6,13,14,17#. For P,Pup, the system starts atT50 from
the bottom of the energy well atv5b. Upon heating, the
particles first start to explore the wider region in the botto
of the potential well and the system expands. At higher te
peratures, the particles penetrate the softened core an
system shrinks, showing an anomalous temperature-dr
contraction. For even higher temperatures, the particles m
outside of the potential well, causing the system to expa

The minimum density pointTmD is of interest. In real
liquids with TMD , TmD is rarely observed@3#, possibly be-
cause it would be located at a low temperature, where
liquid phase is not stable. As pressure is lowered further,
maximum and minimum density points coincide at so
point (Tlow ,Plow), which can be found from the system o
equations (]v/]T)P50 and (]2v/]T2)P50. We have ob-
served this behavior upon changing the parameters of
interaction potential@see, e.g., Fig. 2~b!#. For P,Plow , no
density anomaly is observed, as shown in Fig. 2~b!.

IV. ISOTHERMAL COMPRESSIBILITY ANOMALY

The isothermal compressibility is defined as

KT[2
1

V S ]V

]PD
T

5
1

r S ]r

]PD
T

. ~14!

FIG. 2. Isobars ofv, the average length per particle, for th
discrete 1D core-softened potential showing the conditions un
which aTMD andTmD exist. ~a! The parameter values area51, b
51.4, c51.7, e52, andl50.5. These values along with settin
kB and the mass of the particles to unity determine the units. F
Eq. ~12!, these values result inPup52.5. Plow is almost zero, so no
P,Plow isobar is shown. TheTMD point is marked by a filled
ellipse and theTmD point by an open ellipse.~b! The parameter
values area51, b51.2, c51.7, e52, l50.5 and thus from Eq.
~12!, Pup55. Now Plow'3.3, so aP,Plow isobar is shown.
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KT is thus the response of the volume to its conjugate v
able pressure and it is proportional to fluctuations in spec
volume,

KT}^~dV!2&. ~15!

For most materials (]KT /]T)P.0, so fluctuations de-
crease upon cooling. In the case of water, for a wide rang
pressures,KT passes through a minimum and shows
anomalous increase upon cooling. Along theP51 atm iso-
bar, for example, the minimum compressibility point
around 46 °C@1#.

From Eq.~9! and Eq.~14!, we find

KT5
1

bv F 1

P2
1

1

C~T,P!

]2C~T,P!

]P2

2S 1

C~T,P!

]C~T,P!

]P D 2G , ~16!

where

]2C~T,P!

]P2
5b2@fla2ua1~f2fl!b2ub1~12f!c2uc#.

~17!

Figure 3 showsKT as a function ofT along isobars from Eq.
~16!. As T→`, KT tends to its ideal gas value 1/P, which is
also predicted by Eq.~11!. As T→0, using Eq.~14!, we find

KT→0 ~T→0,PÞPup!. ~18!

er

m

FIG. 3. Isothermal compressibility for the same parameter v
ues and units as Fig. 2~a!. ~a! Isothermal compressibility along dif
ferent isobars, with their maxima marked by filled circles.KT along
the isobarPup diverges asT→0. ~b! Log-log plot of the same
results showing the divergence ofKT as 1/T along the critical isobar
P5Pup.
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As T decreases from infinity to zero,KT passes through two
extrema, a minimum and a maximum, between wh
(]KT /]T)P,0. Thus the 1D core-softened model genera
a compressibility anomaly.

V. DENSITY AND COMPRESSIBILITY EXTREMA LINES

The locus of the pointsTMD in the P-T phase diagram is
of special interest. For water, the shape of theTMD line helps
distinguish between different scenarios proposed to exp
water’s anomalies@18–20#. In simulations@21–23#, theTMD
line presents a ‘‘nose,’’ i.e., a point in which asP decreases
the slope changes from negative to positive passing thro
an infinite value~Fig. 4!.

In Fig. 4, we present theTMD and TmD with the same
parameters as in Fig. 2. We observe that both lines origin
at Pup @25# and terminate atPlow . Moreover, theTMD line
has a negative slope for largeP which is in agreement with
experimental water and for lowerP the slope of theTMD line
changes sign and so a nose is present.

As shown in Fig. 4, the locus of extrema in compressib
ity intersects theTMD line at its nose, as predicted by Sast
et al. @19# using thermodynamic relations. Moreover, whe
ever theTMD line has a negative slope, the compressibil
must increase upon cooling in the region to the left of
TMD line @19#, resulting in a line ofKT maxima which origi-
nates from the pointC8(T50,P5Pup).

Noteworthy is the existence of a starting and ending po
for the TMD line. The starting point is the pointC8(T50,P
5Pup), and the ending point (Tlow ,Plow), whereTmD and
TMD meet. In Fig. 4~b! we show that the overall phase di
gram does not change qualitatively upon varying the par
eters of the potential.

FIG. 4. The loci of the two density extrema (TMD andTmD! and
the two KT extrema (KT

max and KT
min) for the discrete potential o

Fig. 1; ~a! with the same parameter values and units as Fig. 2~a!, so
Pup52.5 andPlow'0; the locus ofKT extrema has two ‘‘loops,’’
one connected to the pointC8(T50,P5Pup) and the second to the
point C(T50,P50), and~b! with the same parameter values a
units as Fig. 2~b!, for which Pup55 and Plow'3.3; the two
‘‘loops’’ now join.
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VI. ENTROPY ANOMALY

Since (]S/]P)T52(]V/]T)P , if ( ]V/]T)P,0, then

S ]S

]PD
T

.0. ~19!

Equation ~19! is anomalous because, contrary to intuitio
compressing the system at constantT increases its entropy
@24#. To calculate the entropy from Eq.~5!, we useS[
2(]G/]T)P . We obtain

s[
S

NkB
5

3

2
1 ln@C~T,P!/~LbP!#2

b

C~T,P!

]C~T,P!

]b
,

~20!

where

]C~T,P!

]b
5~el2Pa!flua1e~f2lfl!ub

2~f2fl!Pbub2efuc

2~12f!Pcuc . ~21!

Using Eq. ~20!, we plot the entropy for two isotherm
~Fig. 5!. For T50.6, there is no density anomaly@Fig. 5~a!#
and hence no entropy anomaly. ForT50.5, there is a density
anomaly and hence an entropy anomaly; Fig. 5~b! shows this
anomalous increase ofS as a function ofP.

FIG. 5. ~a! The region of theP-T plane where the density an
entropy are anomalous~gray!, from Fig. 4~a!. ~b! The behavior of
the entropy along two different isotherms. TheT50.5 isotherm
intersects the anomalous region and shows the maximum and m
mum marked in both figures by the closed circles. TheT50.6 iso-
therm is outside the anomalous region and does not show
anomaly.
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VII. ANALOGIES WITH THE ISING MODEL

A. First critical point

The gas-liquid first-order transition line ending at a cri
cal point which is present in higher dimensions shrinks to
point C[(T50,P50) for a 1D fluid in which the particles
interact with an attractive potential. This pointC is the rem-
nant of what is a critical point in higher dimensions: f
example,KT diverges forT→0,

KT;1/T ~T→0,P50!, ~22!

analogous to the divergence of the magnetic susceptibilityxT
along the zero field lineH50 for the 1D Ising model,

xT;1/T ~T→0,H50!. ~23!

The constant-pressure specific heatCP[T(]S/]T)P is ob-
tained from Eq.~20!, with the result

CP

NkB
5

3

2
1b2F 1

C~T,P!

]2C~T,P!

]b2

2S 1

C~T,P!

]C~T,P!

]b D 2G . ~24!

For smallP andT, the specific heat has the form

CP;a01a2~bP!2, ~25!

the analog of the Ising case for smallH andT @27#,

CH;a01a2~bH !2. ~26!

These features are common to model 1D fluids with attr
tive potentials.

B. Second critical point

Next we will discuss the ‘‘remnant’’ of a second critica
point for our core-softened model. In addition to the dive
gence along theP50 isobar, we find a divergence along th
P5Pup isobar~Fig. 3!,

KT;
1

T
@T→0,P5Pup#. ~27!

We also observe from Eq.~13! and Fig. 2 that there is a
discontinuity in the order parameterv when crossingC8(P
5Pup,T50) along theT50 axis; this is the analog of wha
happens to the magnetization when crossing theH50 point
along theT50 axis for the Ising model.

Next we considerCP . Taking the limitT→0 of Eq. ~24!
and definingH[uP2Pupu, we find

CP5
3

2
1

wA2

~11w!2
~bH !2, ~28!

where we have introduced the parametersA[b2a and w
[exp(2bAH). Equation ~28! is the analog ofCH for the
Ising model. Figure 6 shows the anomalous behavior ofCP
as a function ofT along different isobars.
e

-

-

It is interesting to note that simulations of water using t
ST2 potential display a compressibility anomaly due to
presence of a second critical point in the metastable regio
the liquid @22,28#, and a line ofKT maxima originates from
this second critical point.

VIII. INTERPRETATION IN TERMS OF TWO LOCAL
STRUCTURES

The density and compressibility anomalies can be rela
to the interplay between two local structures: an open str
ture in which the nearest-neighbor particles are typically a
distanceb, and a denser structure in which the nearest nei
bors penetrate into the softened core and are typically
smaller distancea. The favored local structure is determine
by the Gibbs potential per particle,

g~T,P!5min
v

$u1Pv2Ts%, ~29!

which is shown in Fig. 7 as a function of the volume p
particle atT50 for two different values ofP. For P,Pup
and T50, the minimum corresponds to the ‘‘open stru
ture’’ with r'b. IncreasingP increases the value ofu
1Pv2Ts for the open structure~Fig. 7!. For P.Pup, the
minimum corresponds to the ‘‘dense structure’’ withr'a.

FIG. 6. Constant-pressure specific heat for the same param
values and units as Fig. 2~a!, along different isobars,P52.75Pup

10.2 andP52.35Pup20.2. NearT50, the two curves coincide
as predicted by Eq.~28!, since the values ofH5uP2Pupu are iden-
tical.

FIG. 7. Schematic plot of the functionu1Pv2Ts at T50 for
the core-softened potential of Fig. 1, in arbitrary units equivalen
that of Fig. 1. The equilibrium value ofv(P) is determined as the
absolute minimum, which is located atv5b for P1,Pup and atv
5a for P2.Pup.
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The value ofPup of Eq. ~12! can also be found by equa
ing u1Pv2Ts ~at T50) for the two local minima, which
results in

Pup52~uopen2udense!/~vopen2vdense!. ~30!

Substituting uopen52e,udense52le,vopen5b,vdense5a re-
sults in the same expression as Eq.~12!.

For higher dimensions, Eq.~30! helps to estimate the
pressure region in which a transition between a dense an
open structure could happen. Ford51, the contribution of
theTs term makes the double-well structure of Fig. 4 disa
pear whenT.0. This may not be true in higher dimension
If we assume that the qualitative shape ford.1 changes
little from the d51 case, then ford.1 there can exist a
first-order transition line for smallT, eventually terminating
in a critical pointC8.

IX. SUMMARY

We used a 1D core-softened potential, which mimics
effect of hydrogen bonding, to develop a physical picture
some of the anomalies present in liquid water. We discus
the relation between the shape of the potential and
anomalies in density and entropy and their associated
sponse functionsKT andCP . The form of the potential lead
to the existence atT50 of a low-density phase~favored at
low pressures! and of a high-density phase~favored at high
pressures!, and to the appearance of a pointC8 at a positive
pressure, which is the analog of theT50 ‘‘critical point’’ in
the 1D Ising model.
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APPENDIX A: DERIVATION OF THE FREE ENERGY
FOR THE 1D CORE-SOFTENED MODEL

We start from the general definition of the partition fun
tion

Z~T,P![
1

~DV!N!hNE0

`

dVe2bPV

3E dNpdNxe2bH(p1 , . . . ,pN ,x1 , . . . ,xN),

~A1!

whereN is the number of particles,V is the 1D system size
xi and pi are the position and momentum of particlei, re-
spectively, andH(p1 , . . . ,pN ,x1 , . . . ,xN) is the Hamil-
tonian of the system.DV is a discretization factor forV,
which is needed for keepingZ dimensionless and does n
enter any equation of state. The Hamiltonian can be pa
tioned into its kinetic and potential parts,
an

-

e
r
ed
e
e-

,
.

ti-

H~p1 , . . . ,pN ,x1 , . . . ,xN![(
i 51

N pi
2

2m
1U~x1 , . . . ,xN!.

~A2!

One can separate Eq.~A1! into a momentum and a configu
rational integral, where the momentum part is

Zp~T![
1

hNE dNp expS 2b(
i 51

N pi
2

2mD . ~A3!

This integral can be written as the product ofN integrals over
momenta, and then using the Gaussian integral formula@29#
we find

Zp~T!5
1

hN S E
2`

`

dp exp~2bp2/2m! D N

5@L~T!#2N,

~A4!

where L(T), which has the dimension of length, is th
temperature-dependent De Broglie wavelengthL(T)
[h/A2pmkBT. Thus the partition function takes the form

Z~T,P!5
1

~DV!N!L~T!N

3E
0

`

dVe2bPVE dNxe2bU(x1 , . . . ,xN). ~A5!

In order to take further steps, we use the fact that
range of interaction is less than twice the hard corec
,2a). As a result, one can think of the particles in the 1
system as a chain, in which each particle interacts only w
its two nearest neighbors. Thus for each arrangement of
particles, we can write the interaction potentialU as the sum
of N21 terms,

U~x1 , . . . ,xN!5U~xN2xN21!1U~xN212xN22!1•••

1U~x22x1!. ~A6!

Using Eq.~A6!, we rewrite Eq.~A5! as

Z~T,P!5
1

~DV!L~T!NE0

`

dVe2bPVE
0

V

dxNE
0

xN
dxN21

3E~xN2xN21!3E
0

xN21
dxN22

3E~xN212xN22!•••E
0

x2
dx1E~x22x1!,

~A7!

whereE is defined as

E~x![e2bU(x). ~A8!

In Eq. ~A7! we have used the symmetry ofZ under permu-
tation of the particles and thus have written Eq.~A7! only for
a specific order of particles, in whichx1,x2,•••,xN . All
other permutations are equivalent to this integral, after



to nc-

-

:
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numbering the particles. This results in a permutation fac
N! which has canceled theN! factor in the denominator. We
rewrite Eq.~A7! as

Z~T,P!5
1

~DV!L~T!NE0

`

dVe2bPVFN~V!, ~A9!

where we have introduced the functionFi(x), defined recur-
sively as

FN~V![E
0

V

dxNFN21~xN!5~1*FN21!~V!, ~A10!

Fi~xi 11![E
0

xi 11
dxiE~xi 112xi !Fi 21~xi !

5~E* Fi 21!~xi 11!, ~A11!

F0~x1![1. ~A12!
th
uc

ta

w

i

rThe star operator * represents the binary convolution fu
tional defined as

~ f * g!~x![E
0

x

dy f~x2y!g~y!. ~A13!

We further use the notationL@ f # for the Laplace transforma
tion functional, which is defined as

L@ f #~z![E
0

`

e2zxf ~x!, ~A14!

to find the following simple form for the partition function

Z~T,P!5
1

~DV!L~T!N
L@FN#~bP!. ~A15!

Note that according to Eqs.~A10!, ~A12!, and~A15!,
~A16!
Next we use the convolution theorem, which states that
Laplace transform of the convolution is equal to the prod
of the Laplace transforms of each function@29#,

L@ f * g#~z!5L@ f #~z!3L@g#~z!, ~A17!

and also the formula for the Laplace transform of a cons
function @29#,

L@c#~z!5
c

z
, ~A18!

to obtain

Z~T,P!5
1

~DV!L~T!N~bP!2
@V~T,P!#N21. ~A19!

HereV(T,P) is defined in Eq.~4!.

APPENDIX B: LOW- T LIMIT

In order to derive properties of the free energy at lo
temperature approaching the pointC8(T50,P5Pup), we
note that in Eq.~7! as T→0, for small P, the fub term
dominates, while for largeP theflua dominates. In order to
find the limit of C(T,P) and its derivatives, we note that

flua

fub
5exp$b@P~b2a!2~12l!e#%. ~B1!

The value ofP where thefub term balances theflua term
follows equating the argument of the exponential to zero
e
t

nt

n

Eq. ~B1!. The result forPup is given in Eq.~12!. Using Eqs.
~12! and ~B1!, Eq. ~7! becomes

C~T,P!;faux$11exp@2b~b2a!uP2Pupu#%, ~B2!

where

a51, ux5ub ~P,Pup!,
~B3!

a5l, ux5ua ~P.Pup!.

For ]C(T,P)/]P we use Eq.~B2! and]ux /]P52bxux to
find

]C~T,P!

]P
;2~bx!C~T,P!, ~B4!

where x5b for b,Pup and x5a for b.Pup. Using Eqs.
~B3!, ~B2!, and~B4! in Eq. ~9! leads to Eq.~13!.

To find the scaling form ofKT for T→0, we use the
equation for the second derivative ofC(T,P),

]2C~T,P!

]P2
}~bx!2C~T,P!. ~B5!

From Eq.~16!, we findKT for any PÞPup to behave as

KT;~bvP2!215~P1bxP2!21 ~T→0,PÞPup!,
~B6!

which is consistent with Eq.~18!.
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In order to derive the limiting expressions for the entro
and specific heat, we must differentiate the free energy w
respect tob. We start by rewriting Eq.~5! as

g~T,P![
G

N
5kBT ln~L/V!5kBTS 3

2
ln b2 ln C~T,P!

1 ln P1constD . ~B7!

For C(T,P) we rewrite Eq.~B2! as

C~T,P!;E~T,P!3@11w~T,P!#, T→0 ~B8!

with the definitions

E~T,P![exp@b~ea2Px!#, ~B9!
hy
,

n

ha
-
n-

r t
d
ny

nd
th
w~T,P![exp~2b!~b2a!uP2Pupu.

Using these definitions, we find

]C~T,P!/]b}~ea2Px!E@11e~12T!#, ~B10!

]2C~T,P!/]b2}~ea2Px!2E@11e~12T!2#.

Using the above equations and Eq.~24!, we find

CP5
3

2
1b2~ea2Px!2S 11w~12t !2

11w
2

@11w~12t !#2

~11w!2 D ,

~B11!

whose leading term is Eq.~28!.
n-
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ys.
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