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Waterlike anomalies for core-softened models of fluids: One dimension
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We use a one-dimension&lD) core-softened potential to develop a physical picture for some of the
anomalies present in liquid water. The core-softened potential mimics the effect of hydrogen bonding. The
interest in the 1D system stems from the facts that closed-form results are possible and that the qualitative
behavior in 1D is reproduced in the liquid phase for higher dimensions. We discuss the relation between the
shape of the potential and the density anomaly, and we study the entropy anomaly resulting from the density
anomaly. We find that certain forms of the two-step square-well potential lead to the existélie® aif a
low-density phase favored at low pressures and of a high-density phase favored at high pressures, and to the
appearance of a poil@’ at a positive pressure, which is the analog of The0 “critical point” in the 1D
Ising model. The existence of poif' leads to anomalous behavior of the isothermal compressibilitand
the isobaric specific hed@p. [S1063-651X99)06012-3

PACS numbeps): 61.20.Gy, 61.25.Em, 65.70y, 64.70.Ja

[. INTRODUCTION currence of these anomalies to the shape and parameters of
the potential. We also discuss the possible existence of a
Water, the most common liquid on earth, is uncommon insecond critical point and its relation to the parameters of the
many of its properties. For example, water at ambient presmodel.

sure has an anomalous density behavior, asTfo# °C its The core-softened potential that we studyFeg. 1)
density decreases upon cooling. The subject of liquid anoma-
lies is not limited to the density anomaly. Two other anoma- o O<r<a

lies are the increase of isothermal compressibiity (den-

sity fluctuationy and of the isobaric specific heatp —\e, a<r<b

(entropy fluctuationsupon cooling. All these anomalies oc- um=1 _ e, b<r<c @
cur in liquid water[1] and some occur also in other liquids 0 r>c
[1-3]. ' '

In their pioneering work, Stell and Hemmer investigated
potentials that have a region of negative curvature in theiwherer is the particle separation. The potential is composed
repulsive coreg[4] (henceforth referred to as core-softenedof a “hard core” of diameteta which has a repulsive shoul-
potential$ in relation to the possibility of a new critical point der (henceforth referred to as “softened cojedf width (b
in addition to the normal liquid-gas critical point. They also —a) and depth\ e, and an attractive well of widthc(— b)
pointed out that for the one-dimensiorfdD) model with a  and depthe. Unless specified otherwise, our numerical cal-
long-range attractive tail, the isobaric thermal expansion coeulations are for the choice of values=1, b=14, c
efficient, ap=V~"1(dV/dT)p (WhereV, T, andP are the =1.7, e=2, and\=0.5[12]. A similar potential was intro-
volume, temperature, and pressurean take an anomalous duced by Ben-Naim to model water anomal[ds,14. A
negative value. Debenedett al, using general thermody- continuous potential of an analogous form models the inter-
namic arguments, confirmed that a “softened core” can leadiction between clusters of strongly bonded pentamers of wa-
to @p<<0 [5]. Stillinger and collaborators found,<0 fora  ter[15].
3D system of particles interacting by purely repulsive
interactions—a Gaussian potentjél.

In this work, we investigate the relation of a core-softened u(r)
potential to the liquid anomalies mentioned abao&b.initio
calculations[ 7] and inversion of structure factor dafta,8g]
revealed that a core-softened potential can be considered a
realistic first-order approximation for the interaction of many -Ae
materials with anomalous behavi@,9], even in the case of
network forming anomalous liquiddl]. A recent work has
showed that the anomalous behavior of a 1D model can be
reproduced in two dimension(&D) as well[10,11].

Here we will provide the details necessary to understand
the preliminary results announced [ib0]. Specifically, we
investigate thoroughly an exactly solvable 1D model in order FIG. 1. General form for the core-softened potentié&l) stud-
to develop an intuitive picture of how the core-softened po-ed here. The length parametexsh,c and energy parameteesh
tential can lead to all three anomalies and to relate the ocare shown(both sets in arbitrary units

—-£
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This type of interaction qualitatively reproduces the den-In the thermodynamic limitN—o, the terms 2 IP and
sity anomaly of water. At sufficiently low pressures and tem-In AV are negligible compared to the other extendioeler
peratures, nearest-neighbor pairs are separated by a distai¢e terms.
r~b to minimize the energy. As temperature increases, the Equation(3) is valid for any 1D system in which each
system explores a larger portion of the configurational spacparticle interacts only with its nearest neighbors. If the inter-
in order to gain more entropy. This includes the penetratioraction potential is given by Ed1), then
of particles into the softened core, which can cause an

anomalous contraction upon heating. _ 1
The relation between the density anomaly and the shape QT.P)= ,BP\P(T'P)’ ®
of the potential can also be understood using the thermody- .
namic relation where(see Appendix A
W(T,P)=[¢" 0+ (p— ") Op+(1— )0 7
(aV/aT)p:BZ(P<(5\/)2>pT+<5\/5E>pT), (2) ( ) [¢ a (d) d) ) b ( d)) c] ( )

_ _ . and 6,(P, T)=e APX ¢(T)=ef.
where 8=1/kgT with kg being the Boltzmann factok is

the energy, and- - - )pt is the thermodynamic average in a IIl. DENSITY ANOMALY

constant, constanfl ensemble. For a system with a density

anomaly, the left-hand side of E(®) is negative at tempera- We calculate the equation of state using the definition
tures below the temperature of maximum den3ify,. The  =dJG(T,P)/dP. From Eq.(5) we find that, in the thermody-

first term on the right-hand side, proportional to the square ofiamic limitN— o, the average “volume’{length in 1D per
the volume fluctuations, is always positive. Thus belbyy particle is

the second term must be negative, which requires anticorre-

lation between the fluctuations B andV. This kind of an- v=V/N= — keT dQ(T,P) ®)
ticorrelation exists for the core-softened model when the Q(T,P) oP
fluctuations occur between the states withb and the states ) ) )

with r~a, which have a larger energy but a smaller volume.USing Egs.(6) and(8), we find the equation of state
We concluc}e that the c'ore—softened potential is a candidate kT keT 0W(T,P)

for generating the density anomaly. V= — —

The paper is organized as follows. In Sec. Il we present P W(T,P) P
the exact solution for the Gibbs potential. Sections 111-VI
discuss the anomalies in the density and entropy, and theY}(here
response functions compressibility and specific heat. In Sec. W (T,P)

VIl we discuss interesting analogies with the Ising model. Tz—,8[(¢*a03+(¢—q&")b0b+(1—¢)cec].
Finally, Sec. VIII interprets the anomalies in terms of two
different local structures. (10

C)

In the high-temperature limit wherg— 1 andfd,— 1, the

Il. EXACT SOLUTION FOR GIBBS POTENTIAL equation of stat¢9) tends to
To derive the Gibbs potential for the model, we choose kT
c<2a to restrict the interactions to nearest neighbors. The v=-—p ta (T—e0), (1)
1D model is then exactly solvable using standard methods
[13,14,16. The partition function igsee Appendix A the equation of state for an “ideal gas” of rods, that is, a

system of noninteracting rods of length
At T=0, v as a function ofP has a discontinuity at

Z(T,P)= [QT.P)INE (3
(AV)IA(T)IN(BP)? (1—\)e
P= PupE W, (12)
whereN is the number of particles\V is a discretization
factor which is needed for keepigdimensionless and does \yhich we call the upper transition pressure. B0,
not enter the equation of state, andT) is the De Broglie
wavelength. Here b, P<P
V= (13
. a, P>Py,.
= — BPXa— Bu(x)
QT.P) fo dxe € ' @ We will return to this first-order transition in Sec. VIII.
Next we study the equation of state for fixed pressure. For
whereu(x) is the interaction potential. each value oP, we find the value of/(T) using Eq.(9) (Fig.
The Gibbs potentiaG(T,P)=—kgT In Z(T,P) is then 2). These isobars separate into two different groups.
(i) For P>Py,, v increases monotonically witf, start-
G(T,P)=—kgT[(N=1)InQ(T,P)—NIn A(T) ing from its minimal values=a. At these high pressures, the

nearest neighbors are pushed inside the softened core and, as
—2InP—-InAV]. (5) a result, the density anomaly does not occur.



6716 SADR-LAHIJANY, SCALA, BULDYREV, AND STANLEY PRE 60

v (@)
yw P=P,=2.5
T
T0.0 0.5 T 10
Vol P<p,,
P, <P<P,
B
T
-3

FIG. 2. Isobars ofv, the average length per particle, for the
discrete 1D core-softened potential showing the conditions under
which aT,,p andTp exist.(a) The parameter values ase=1, b FIG. 3. Isothermal compressibility for the same parameter val-
=1.4,c=1.7, e=2, and\=0.5. These values along with setting ues and units as Fig(&. (a) Isothermal compressibility along dif-
kg and the mass of the particles to unity determine the units. Fronfierent isobars, with their maxima marked by filled circlis.along
Eq. (12), these values result iR,,=2.5. Py, is almost zero, so no the isobarP,, diverges asT—0. (b) Log-log plot of the same
P<P isobar is shown. Thél,, point is marked by a filled results showing the divergencekf as 1T along the critical isobar
ellipse and theT,,p point by an open ellipselb) The parameter P=P,,.
values ara=1, b=1.2, c=1.7, e=2, A=0.5 and thus from Eq.

(12), Pyp=5. Now P, ~3.3, so aP<P,,, isobar is shown. K+ is thus the response of the volume to its conjugate vari-
able pressure and it is proportional to fluctuations in specific
(il) WhenP is lowered just belowP,,, v=b atT=0[Eq.  Vvolume,
(13)], and thev(T) isobars show a maximum at a tempera-

-1
log, T

ture of minimum densityT,p and a minimum atTyp Ko ((8V)?). (15
[3,6,13,14,1T. For P<P,,, the system starts dt=0 from ) ]
the bottom of the energy well at=b. Upon heating, the For most materials dK1/dT)p>0, so fluctuations de-

particles first start to explore the wider region in the bottomcrease upon cooling. In the case of water, for a wide range of
of the potential well and the system expands. At higher temPressuresKr passes through a minimum and shows an
peratures, the particles penetrate the softened core and tBBomalous increase upon cooling. Along the 1 atm iso-
system shrinks, showing an anomalous temperature-drivep@r, for example, the minimum compressibility point is
contraction. For even higher temperatures, the particles movaound 46 °C1].
outside of the potential well, causing the system to expand. From Eq.(9) and Eq.(14), we find

The minimum density poinf,,,p is of interest. In real

liquids with Typ, Tmp is rarely observed3], possibly be- 1)1 1 9°W(T,P)

cause it would be located at a low temperature, where the KT:E §+ V(T,P) gp2

liquid phase is not stable. As pressure is lowered further, the

maximum and minimum density points coincide at some 1 gW(T,P)\2

point (Tiow:Plow), Which can be found from the system of _(\P(T Py P ) , (16)
equations ¢v/dT)p=0 and @>v/dT?)p=0. We have ob- ’

served this behavior upon changing the parameters of the
interaction potentialsee, e.g., Fig. ®)]. For P<P,y,, no  WNere

density anomaly is observed, as shown in Figdp)2
aZW(T’P) 2r 4Nn2 N\ h?2 2
P2 =pl¢ a0yt (dp—")b Oy +(1—P)c6,].

IV. ISOTHERMAL COMPRESSIBILITY ANOMALY (17

The isothermal compressibility is defined as Figure 3 showKt as a function ofl along isobars from Eq.

(16). As T—, K¢ tends to its ideal gas valueP/which is
1/ 9V 1/ p also predicted by Eq11). As T—0, using Eq(14), we find
B,
T P T

K= —| ==
VIdP/. p Kr—0 (T—0P#Py). (18)
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FIG. 4. The loci of the two density extremagp andT,p) and
the two K extrema KT® and KT for the discrete potential of 0.4

Fig. 1; (a) with the same parameter values and units as K, &
Pup=2.5 andPy,,~0; the locus ofK; extrema has two “loops,”
one connected to the poi’' (T=0,P=P,;) and the second to the FIG. 5. (a) The region of theP-T plane where the density and
point C(T=0,P=0), and(b) with the same parameter values and entropy are anomalougiray), from Fig. 4a). (b) The behavior of
units as Fig. &), for which P =5 and P,,~3.3; the two the entropy along two different isotherms. The=0.5 isotherm
“loops” now join. intersects the anomalous region and shows the maximum and mini-
mum marked in both figures by the closed circles. The0.6 iso-

P th i tside th | i dd t sh

As T decreases from infinity to zer& passes through two anec:nr?a:;sl outside the anomalous region anc does not show any
extrema, a minimum and a maximum, between which '
(aKT/aT)P<.O'.. Thus the 1D core-softened model generates V. ENTROPY ANOMALY
a compressibility anomaly.

Since @S/ 9P)t=—(dVIdT)p, if (dVIdT)p<O0, then

V. DENSITY AND COMPRESSIBILITY EXTREMA LINES ( 9S

—) >0. (19
.

The locus of the point3 ),y in the P-T phase diagram is P

of special interest. For water, the shape of Thg line helps
distinguish between different scenarios proposed to explaigqyation (19) is anomalous because, contrary to intuition,
water's anomalief18—20. In simulationg21-23, theTyp  compressing the system at constanincreases its entropy

line presents a “nose,” i.e., a point in which Bsdecreases 24]. To calculate the entropy from Eq5), we useS=
the slope changes from negative to positive passing through (5G/4T), . We obtain

an infinite value(Fig. 4).
In Fig. 4, we present thd,, and T,,p with the same s 3 B aW(T.P)
parameters as in Fig. 2. We observe that both lines originates= _—_ = ~ 4 |n[w(T,P)/(ABP)]— .
at P, [25] and terminate aPy,,. Moreover, theTy, line Nkg 2 w(T,P) B
has a negative slope for largewhich is in agreement with (20)
experimental water and for low@rthe slope of thd,p line
changes sign and so a nose is present. where
As shown in Fig. 4, the locus of extrema in compressibil-
ity intersects thelyp line at its nose, as predicted by Sastry oW (T,P)
et al. [19] using thermodynamic relations. Moreover, wher- TZ(E?\— Pa)p*0,+ e(p—Ng") by
ever theT,,p line has a negative slope, the compressibility
must increase upon cooling in the region to the left of the —(¢p— ¢p")PbO,— e b,
Twp line [19], resulting in a line oK maxima which origi-
nates from the poin€'(T=0,P=P,,). —(1-¢)Pch.. (21)
Noteworthy is the existence of a starting and ending point
for the T),p line. The starting point is the poir@’(T=0,P Using Eq.(20), we plot the entropy for two isotherms
=P,p), and the ending pointT(y, ,Po.), WhereT,p and  (Fig. 5. For T=0.6, there is no density anomdlifig. 5a)]
Twpo Meet. In Fig. 4b) we show that the overall phase dia- and hence no entropy anomaly. Hor 0.5, there is a density
gram does not change qualitatively upon varying the paramanomaly and hence an entropy anomaly; Fip) Shows this
eters of the potential. anomalous increase &as a function ofP.
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VIl. ANALOGIES WITH THE ISING MODEL
A. First critical point

The gas-liquid first-order transition line ending at a criti-

cal point which is present in higher dimensions shrinks to the

point C=(T=0,P=0) for a 1D fluid in which the particles
interact with an attractive potential. This poi@tis the rem-
nant of what is a critical point in higher dimensions: for
example K diverges forT—0,

Ki~1UT (T—0,P=0), (22)
analogous to the divergence of the magnetic susceptilyiity

along the zero field linéd =0 for the 1D Ising model,

xt~UT (T—0H=0). (23
The constant-pressure specific h€&t=T(9S/dT)p is ob-

tained from Eq.(20), with the result

Cp 3 e 1 ”W(T,P)
Nkg 2 7 |W(T,P) 4p2
1 9¥(T,P)\?
- (24)
w(T,P) B
For smallP andT, the specific heat has the form
Cp~ag+ay(BP)?, (25
the analog of the Ising case for smelland T [27],
Cy~ap+ay(BH)2 (26)

These features are common to model 1D fluids with attrac

tive potentials.

B. Second critical point

Next we will discuss the “remnant” of a second critical
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FIG. 6. Constant-pressure specific heat for the same parameter
values and units as Fig(&, along different isobar®=2.7=P
+0.2 andP=2.3=P,,—0.2. NearT=0, the two curves coincide,
as predicted by Eq(28), since the values dfi=|P—P,,| are iden-

tical.

It is interesting to note that simulations of water using the
ST2 potential display a compressibility anomaly due to the
presence of a second critical point in the metastable region of
the liquid[22,28, and a line ofK; maxima originates from
this second critical point.

VIII. INTERPRETATION IN TERMS OF TWO LOCAL
STRUCTURES

The density and compressibility anomalies can be related
to the interplay between two local structures: an open struc-
ture in which the nearest-neighbor particles are typically at a
distanceb, and a denser structure in which the nearest neigh-
bors penetrate into the softened core and are typically at a
smaller distance. The favored local structure is determined
by the Gibbs potential per particle,

g(T,P)=min{u+Pv—-Ts}, (29

which is shown in Fig. 7 as a function of the volume per

point for our core-softened model. In addition to the diver-particle atT=0 for two different values of. For P<Py
gence along th®=0 isobar, we find a divergence along the and T=0, the minimum corresponds to the “open struc-

P=P,, isobar(Fig. 3),

1
Ki~7 [T—=0P=P]. (27)

We also observe from Eq13) and Fig. 2 that there is a
discontinuity in the order parameterwhen crossingC’ (P
=Py, T=0) along theT=0 axis; this is the analog of what
happens to the magnetization when crossingHie0 point
along theT=0 axis for the Ising model.

Next we consideCp. Taking the limitT—0 of Eq.(24)
and definingH=|P— P, we find

WA?

1wy @8

Cp=3+ (BH)?,

where we have introduced the parametdessb—a and w
=exp(—BAH). Equation(28) is the analog ofCy for the
Ising model. Figure 6 shows the anomalous behavioC€ pf
as a function ofT along different isobars.

ture” with r~b. IncreasingP increases the value aof
+Pv—Ts for the open structurérig. 7). For P>P,, the
minimum corresponds to the “dense structure” witlk a.

v |

E P>P,

T

) /l/ ]
—7\£+Pza | _— PI <Pup
-Ae+Pag | ——— T=0

a b c

\

FIG. 7. Schematic plot of the functiam+Pv—TsatT=0 for
the core-softened potential of Fig. 1, in arbitrary units equivalent to
that of Fig. 1. The equilibrium value of(P) is determined as the
absolute minimum, which is located at=b for P, <P, and atv
=a for P;>Py,.
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The value ofP,, of Eq. (12) can also be found by equat- N pi2
ing u+Pv—Ts (at T=0) for the two local minima, which HP1s -« PNXTy - ,XN)EE ﬁ-i‘U(Xl, cee XN
results in =1
(A2)
Pup= — (Ugper Udense! (Voper™ Vdensd- (300 One can separate EGAL) into a momentum and a configu-

rational integral, where the momentum part is
Substituting Ugpe= — €,Ugense™ — N €,Voperi=D,Vgense a r€- N o
sults in the same expression as EtR). 1 N Pi
For higher dimensions, Eq30) helps to estimate the ZP(T)=h_NJ d peXp( —,8;1 m) (A3)
pressure region in which a transition between a dense and an

open structure could happen. Fib+1, the contribution of  Thjs integral can be written as the productbintegrals over

the Ts term makes the double-well structure of F|g 4 disap'momenta, and then using the Gaussian integra| form}a
pear whenl>0. This may not be true in higher dimensions. we find

If we assume that the qualitative shape tbr1 changes

little from the d=1 case, then fod>1 there can exist a 1 % N

first-order transition line for small, eventually terminating Zy(T)= —N(j dpexp(—,8p2/2m)) =[AM]N,

in a critical pointC’. ho\ = (Ad)

IX. SUMMARY where A(T), which has the dimension of length, is the
temperature-dependent De Broglie wavelength(T)

We used a 1D core-softened potential, which mimics the_ /51 k*T Thus the partition function takes the form
effect of hydrogen bonding, to develop a physical picture for mmksT. P

some of the anomalies present in liquid water. We discussed
the relation between the shape of the potential and the Z(T,P)=

anomalies in density and entropy and their associated re- (AV)NIA(T)N

sponse function& andCp . The form of the potential leads "

to the existence at =0 of a low-density phasé&avored at XJ d\/efﬁPVJ dNVxe BY(a, -+, N), (AB)
low pressuresand of a high-density phagéavored at high 0

pressures and to the appearance of a pot at a positive
pressure, which is the analog of tfie=0 “critical point” in In order to take further steps, we use the fact that the
the 1D Ising model. range of interaction is less than twice the hard cote (

<2a). As a result, one can think of the particles in the 1D
system as a chain, in which each particle interacts only with
ACKNOWLEDGMENTS its two nearest neighbors. Thus for each arrangement of the
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su ghting U(Xg, oo Xn)=UXN=XN-2) FU XN = Xn—2) -
pport.
+U(Xo—Xq). (AB)

APPENDIX A: DERIVATION OF THE FREE ENERGY

Using Eq.(A6), we rewrite Eq.(A5) as
FOR THE 1D CORE-SOFTENED MODEL

— " ) . v <
. We start from the general definition of the partition func (T.P)= f dVe*ﬁPVf dXNf Nde,l
1on (AV)A(T)NJo 0 0
© XN-1
Z(T P)E—f dve B8PV XE(XN_XNfl)XfO dxy-2
(AV)N!hNJo
X2
% f dNpdNxe AL - PN X1s - x| XE(XN-1—Xn-2) " - J'o dx;E(X3—X),
(A1) (A7)

. ) ) ) whereE is defined as
whereN is the number of particled/ is the 1D system size,

X; and p; are the position and momentum of parti¢jere- E(x)=e AU, (A8)
spectively, andH(p, ... ,Pn:X1, - - - Xy) IS the Hamil-
tonian of the systemAV is a discretization factor fok, In Eq. (A7) we have used the symmetry @funder permu-

which is needed for keeping dimensionless and does not tation of the particles and thus have written E§7) only for
enter any equation of state. The Hamiltonian can be partia specific order of particles, in whiohh <x,<---<xy. All
tioned into its kinetic and potential parts, other permutations are equivalent to this integral, after re-
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numbering the particles. This results in a permutation factofhe star operator * represents the binary convolution func-
N! which has canceled thg! factor in the denominator. We tional defined as
rewrite Eq.(A7) as

1 (5 g)(x)= foxdyﬂx—y)g(y). (A13)

AP vy

fdee’BPVFN(V), (A9)
0

We further use the notatiof f ] for the Laplace transforma-
where we have introduced the functibr(x), defined recur- tion functional, which is defined as
sively as

[’

/L[f](z)zf e “f(x), (A14)

v
FN(V)EL dxyFn-1(Xn) =(1*Fn_1)(V), (AL0) 0

to find the following simple form for the partition function:
Xj+1
Fi(xi+l)EJO AXE(Xi+1=Xi)Fi—1(x))

Z(T,P)=—[[F P). (A15)
~(E*Fi ) (%), (A1) TR avam e
Fo(xq)=1. (A12) Note that according to Eq$A10), (A12), and(A15),
|
— - ) Al16
Z(T,P) (AV)A(T)N['[l *(Ex (Ex*---(Ex1)---))](BP) (A16)

Next we use the convolution theorem, which states that thgq. (B1). The result forP, is given in Eq.(12). Using Egs.
Laplace transform of the convolution is equal to the product12) and(B1), Eq. (7) becomes
of the Laplace transforms of each functi®g],

V(T,P)~¢“0{1+exd —B(b—a)|P—Pyll}, (B2

LIf*g9l(2)=L[f1(2) X L[g](2), (A17)
where
and also the formula for the Laplace transform of a constant

function[29], a=1, 6,=0, (P<Py),
(B3)

Llel(2)=, (A18) a=\, 6,=0, (P>Py).
to obtain ]I;?(; J¥(T,P)/9P we use Eq(B2) anddb,/iP=— Bx0, to

Z(T,P)= Q(T,P)IN"1. (A19 J¥(T,P)

(T.P) (AV)A(T)N(BP)Z[ (T.P)] (A19) —p  ~ ~(B)Y(T.P), (B4)

Here (T, P) is defined in Eq(4). wherex=b for b<P,, andx=a for b>P,,. Using Egs.

(B3), (B2), and(B4) in Eq. (9) leads to Eq(13).
APPENDIX B: LOW- T LIMIT To find the scaling form oKy for T—0, we use the

In order to derive properties of the free energy at low€duation for the second derivative (T, P),

temperature approaching the poi6t(T=0P=P,), we ,

note that in Eq.(7) as T—0, for small P, the ¢6, term J ‘I’(T'P)oc( )20 (T,P) (85)
dominates, while for large the ¢* 8, dominates. In order to p2 B e

find the limit of ¥'(T,P) and its derivatives, we note that

0,
b0y

The value ofP where the¢ 6, term balances the" 6, term
follows equating the argument of the exponential to zero inwhich is consistent with E¢18).

From Eq.(16), we findK+ for any P# P, to behave as

=expplP(b—a)=(1=Nelj.  (BI) Ko~ (BvP?)~1=(P+BxP?)~1 (T-0P#P,y),

(B6)
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w(T,P)=exp(—B)(b—a)|P—Pyj.

and specific heat, we must differentiate the free energy with

respect tg3. We start by rewriting Eq(5) as

o(T,P)= % =kgTIn(A/Q)= kBT(gln B—InV(T,P)

+InP+ consa . (B7)
For W (T,P) we rewrite Eq.(B2) as
W(T,P)~E(T,P)X[1+w(T,P)], T—0 (B8)
with the definitions
E(T,P)=exd B(ea—PXx)], (B9)

Using these definitions, we find
aW(T,P)dBx(ea—PX)E[1+e(1-T)], (B10)
PPV (T,P)/dp%=(ea—Px)2E[1+e(1—T)?].

Using the above equations and Eg4), we find

1+w(1—t)2_[1+w(1—t)]2
1+w (1+w)?
(B11)

3
Cp > + B%(ea—Px)?

whose leading term is E298).
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